The Standard Normal Distribution (2025)

The standard normal distribution is a normal distribution with a mean of zero and standard deviation of 1. The standard normal distribution is centered at zero and the degree to which a given measurement deviates from the mean is given by the standard deviation. For the standard normal distribution, 68% of the observations lie within 1 standard deviation of the mean; 95% lie within two standard deviation of the mean; and 99.9% lie within 3 standard deviations of the mean. To this point, we have been using "X" to denote the variable of interest (e.g., X=BMI, X=height, X=weight). However, when using a standard normal distribution, we will use "Z" to refer to a variable in the context of a standard normal distribution. After standarization, the BMI=30 discussed on the previous page is shown below lying 0.16667 units above the mean of 0 on the standard normal distribution on the right.

The Standard Normal Distribution (1) ====The Standard Normal Distribution (2)

Since the area under the standard curve = 1, we can begin to more precisely define the probabilities of specific observation. For any given Z-score we can compute the area under the curve to the left of that Z-score. The table in the frame below shows the probabilities for the standard normal distribution.Examine the table and note that a "Z" score of 0.0 lists a probability of 0.50 or 50%, and a "Z" score of 1, meaning one standard deviation above the mean, lists a probability of 0.8413 or 84%. That is because one standard deviation above and below the mean encompasses about 68% of the area, so one standard deviation above the mean represents half of that of 34%. So, the 50% below the mean plus the 34% above the mean gives us 84%.

Probabilities of the Standard Normal Distribution Z

This table is organized to provide the area under the curve to the left of or less of a specified value or "Z value". In this case, because the mean is zero and the standard deviation is 1, the Z value is the number of standard deviation units away from the mean, and the area is the probability of observing a value less than that particular Z value. Note also that the table shows probabilities to two decimal places of Z. The units place and the first decimal place are shown in the left hand column, and the second decimal place is displayed across the top row.

But let's get back to the question about the probability that the BMI is less than 30, i.e., P(X<30). We can answer this question using the standard normal distribution. The figures below show the distributions of BMI for men aged 60 and the standard normal distribution side-by-side.

Distribution of BMI and Standard Normal Distribution

The Standard Normal Distribution (4) ====The Standard Normal Distribution (5)

The area under each curve is one but the scaling of the X axis is different. Note, however, that the areas to the left of the dashed line are the same. The BMI distribution ranges from 11 to 47, while the standardized normal distribution, Z, ranges from -3 to 3. We want to compute P(X < 30). To do this we can determine the Z value that corresponds to X = 30 and then use the standard normal distribution table above to find the probability or area under the curve. The following formula converts an X value into a Z score, also called a standardized score:

The Standard Normal Distribution (6)The Standard Normal Distribution (7)

where μ is the mean and σ is the standard deviation of the variable X.

In order to compute P(X < 30) we convert the X=30 to its corresponding Z score (this is called standardizing):

The Standard Normal Distribution (8)The Standard Normal Distribution (9)

Thus, P(X < 30) = P(Z < 0.17). We can then look up the corresponding probability for this Z score from the standard normal distribution table, which shows that P(X < 30) = P(Z < 0.17) = 0.5675. Thus, the probability that a male aged 60 has BMI less than 30 is 56.75%.

Another Example

Using the same distribution for BMI, what is the probability that a male aged 60 has BMI exceeding 35? In other words, what is P(X > 35)? Again we standardize:

The Standard Normal Distribution (10)The Standard Normal Distribution (11)

We now go to the standard normal distribution table to look up P(Z>1) and for Z=1.00 we find that P(Z<1.00) = 0.8413. Note, however, that the table always gives the probability that Z is less than the specified value, i.e., it gives us P(Z<1)=0.8413.

The Standard Normal Distribution (12)

Therefore, P(Z>1)=1-0.8413=0.1587. Interpretation: Almost 16% of men aged 60 have BMI over 35.

Normal Probability Calculator

Z-Scores with R

As an alternative to looking up normal probabilities in the table or using Excel, we can use R to compute probabilities. For example,

> pnorm(0)

[1] 0.5

A Z-score of 0 (the mean of any distribution) has 50% of the area to the left. What is the probability that a 60 year old man in the population above has a BMI less than 29 (the mean)? The Z-score would be 0, and pnorm(0)=0.5 or 50%.

What is the probability that a 60 year old man will have a BMI less than 30? The Z-score was 0.16667.

> pnorm(0.16667)

[1] 0.5661851

So, the probabilty is 56.6%.

What is the probability that a 60 year old man will have a BMI greater than 35?

35-29=6, which is one standard deviation above the mean. So we can compute the area to the left

> pnorm(1)

[1] 0.8413447

and then subtract the result from 1.0.

1-0.8413447= 0.1586553

So the probability of a 60 year ld man having a BMI greater than 35 is 15.8%.

Or, we can use R to compute the entire thing in a single step as follows:

> 1-pnorm(1)

[1] 0.1586553

Probability for a Range of Values

The Standard Normal Distribution (15)

What is the probability that a male aged 60 has BMI between 30 and 35? Note that this is the same as asking what proportion of men aged 60 have BMI between 30 and 35. Specifically, we want P(30 < X < 35)? We previously computed P(30<X) and P(X<35); how can these two results be used to compute the probability that BMI will be between 30 and 35? Try to formulate and answer on your own before looking at the explanation below.

AnswerThe Standard Normal Distribution (16)

The Standard Normal Distribution (17)

Now consider BMI in women. What is the probability that a female aged 60 has BMI less than 30? We use the same approach, but for women aged 60 the mean is 28 and the standard deviation is 7.

AnswerThe Standard Normal Distribution (18)

The Standard Normal Distribution (19)

What is the probability that a female aged 60 has BMI exceeding 40? Specifically, what is P(X > 40)?

AnswerThe Standard Normal Distribution (20)


return to top | previous page | next page

The Standard Normal Distribution (2025)

FAQs

How do you answer normal distribution? ›

Step 1: Subtract the mean from the x value. Step 2: Divide the difference by the standard deviation. The z score for a value of 1380 is 1.53. That means 1380 is 1.53 standard deviations from the mean of your distribution.

What is the standard normal distribution quizlet? ›

A standardized normal distribution has a mean µ of zero and a standard deviation σ of 1. Total area under the curve is 1. The normal table displays values for this distribution. Tells how many standard deviations a value is above or below the mean.

What describes the standard normal distribution? ›

The standard normal distribution is a normal distribution with mean μ = 0 and standard deviation σ = 1. The letter Z is often used to denote a random variable that follows this standard normal distribution.

What is the rule for the normal distribution? ›

The empirical rule, or the 68-95-99.7 rule, tells you where most of your values lie in a normal distribution: Around 68% of values are within 1 standard deviation from the mean. Around 95% of values are within 2 standard deviations from the mean. Around 99.7% of values are within 3 standard deviations from the mean.

How to find standard normal distribution? ›

z = (X – μ) / σ

where X is a normal random variable, μ is the mean of X, and σ is the standard deviation of X. You can also find the normal distribution formula here. In probability theory, the normal or Gaussian distribution is a very common continuous probability distribution.

What is a normal distribution for dummies? ›

What Is a Normal Distribution? Normal distribution, also known as the Gaussian distribution, is a probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean. The normal distribution appears as a "bell curve" when graphed.

Why is a standard normal distribution? ›

The standard normal distribution allows very different sets of data to be compared. Once the data is standardized, it will follow the 68-95-99.7 rule. This allows comparisons between the math test, which was in the top 2.2% of scores, and the science test, which was in the top 15.8% of scores.

What is the Z value for the standard normal distribution? ›

On the graph of the standard normal distribution, z = 0 is therefore the center of the curve. A positive z-value indicates that the point lies to the right of the mean, and a negative z-value indicates that the point lies left of the mean.

What percentage is a standard normal distribution? ›

For the standard normal distribution, 68% of the observations lie within 1 standard deviation of the mean; 95% lie within two standard deviation of the mean; and 99.9% lie within 3 standard deviations of the mean.

What is an example of a normal distribution? ›

A normal distribution is a common probability distribution . It has a shape often referred to as a "bell curve." Many everyday data sets typically follow a normal distribution: for example, the heights of adult humans, the scores on a test given to a large class, errors in measurements.

What is normal distribution in simple word? ›

The normal distribution is also known as a Gaussian distribution or probability bell curve. It is symmetric about the mean and indicates that values near the mean occur more frequently than the values that are farther away from the mean.

How to determine normal distribution? ›

In order to determine normality graphically, we can use the output of a normal Q-Q Plot. If the data are normally distributed, the data points will be close to the diagonal line. If the data points stray from the line in an obvious non-linear fashion, the data are not normally distributed.

What are the main characteristics of the normal distribution? ›

Normal distributions are symmetric, unimodal, and asymptotic, and the mean, median, and mode are all equal. A normal distribution is perfectly symmetrical around its center. That is, the right side of the center is a mirror image of the left side. There is also only one mode, or peak, in a normal distribution.

How do you define if a distribution is normal? ›

The most common graphical tool for assessing normality is the Q-Q plot. In these plots, the observed data is plotted against the expected quantiles of a normal distribution. It takes practice to read these plots. In theory, sampled data from a normal distribution would fall along the dotted line.

What is normal distribution basic formula? ›

For a random variable x, with mean “μ” and standard deviation “σ”, the normal distribution formula is given by: f(x) = (1/√(2πσ2)) (e[-(x-μ)^2]/^2).

The Standard Normal Distribution | Introduction ...Lumen Learninghttps://courses.lumenlearning.com ›

The standard normal distribution is a normal distribution of standardized values called z-scores. A z-score is measured in units of the standard deviation. For ...
A standard normal distribution is a distribution of data that, after being standardized, has the following characteristics: It is a symmetric distribution. It h...
In the standard normal distribution, the mean is 0 and the standard deviation is 1. A normal distribution can be standardized using z-scores.

How do you interpret a normal distribution? ›

A normal distribution has a probability distribution that is centered around the mean. This means that the distribution has more data around the mean. The data distribution decreases as you move away from the center. The resulting curve is symmetrical about the mean and forms a bell-shaped distribution.

How do you state a normal distribution? ›

A normal distribution has two parameters, the mean μ , and the variance σ2 . The mean can be any real number and the variance can be any non-negative number. NOTATION: "X∼N(μ,σ2) X ∼ N ( μ , σ 2 ) " indicates that the random variable X is normally distributed with mean μ and variance σ2 .

What is the best way to describe the normal distribution? ›

What is normal distribution? A normal distribution is a type of continuous probability distribution in which most data points cluster toward the middle of the range, while the rest taper off symmetrically toward either extreme. The middle of the range is also known as the mean of the distribution.

What is a normal distribution example? ›

Normal Distribution Curve

The random variables following the normal distribution are those whose values can find any unknown value in a given range. For example, finding the height of the students in the school. Here, the distribution can consider any value, but it will be bounded in the range say, 0 to 6ft.

Top Articles
Latest Posts
Recommended Articles
Article information

Author: Rev. Porsche Oberbrunner

Last Updated:

Views: 6172

Rating: 4.2 / 5 (53 voted)

Reviews: 92% of readers found this page helpful

Author information

Name: Rev. Porsche Oberbrunner

Birthday: 1994-06-25

Address: Suite 153 582 Lubowitz Walks, Port Alfredoborough, IN 72879-2838

Phone: +128413562823324

Job: IT Strategist

Hobby: Video gaming, Basketball, Web surfing, Book restoration, Jogging, Shooting, Fishing

Introduction: My name is Rev. Porsche Oberbrunner, I am a zany, graceful, talented, witty, determined, shiny, enchanting person who loves writing and wants to share my knowledge and understanding with you.